

FORTIS HOSPITAL MOHALI, A MULTY SPECILITY HOSPITAL

Cll 22nd National Award for Excellence in Energy Management-2021

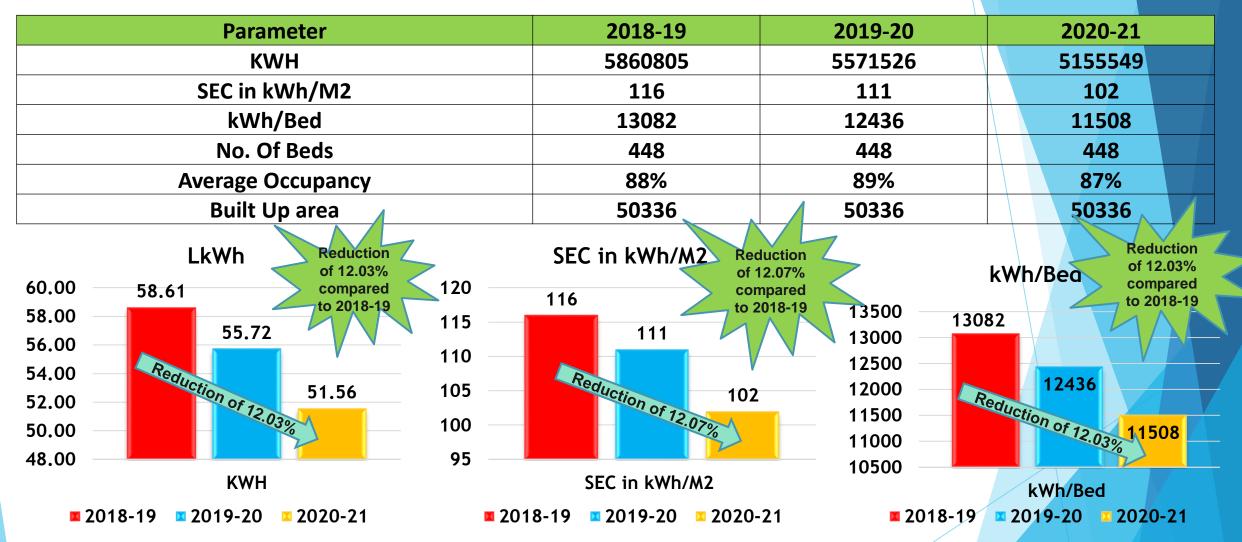
Presented By: - Mr Neeraj Tandon Chief Engineer

BUILDING DETAILS

Fortis Hospital Mohali Establishes in 2001, Approx 2000 sqf/cardiac ICU bed instead of the normal 800-900 sqf/in Indian healthcare Hospital set on sprawling 8.22 acres, with built up area of 50336 square meters.

>FHM is a 360(448) bedded, JCI and NABH certified multi specialty tertiary care hospital,

Fortis Hospital, Mohali has won several awards, including; Best Design Award from American Institute of Architects, 1999

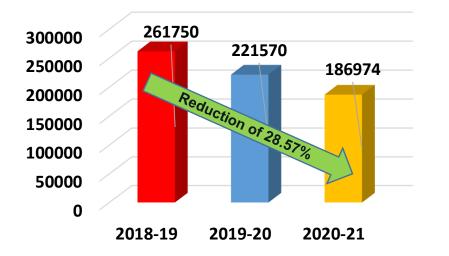

Total Plot Area	8.22acre
Builtup area	50336sqm
No of Beds	448
Operation Theatres	16
Incoming Electrical	2 Sources 11KVA
Generators	1250KVA *3nos
Transformer	2000KVA*4nos
Chiller Plant	433TR*2nos
	200KVA *3nos(UPS are in
UPS	parallel load with ATS),
	120KVA *3Nos.
Fuel	PNG from AGL, HSD
Fuel	

Number of Buildings: 4

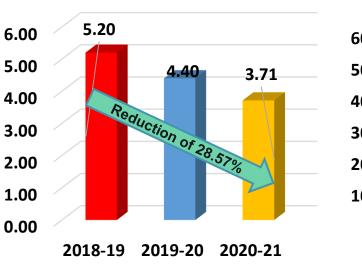
- IPD Block (A block)
- OPD Block (B block)
- Rehabilitation Centre
- Fortis Cancer Institute

NATURAL ENERGY USAGE FOR LIGHTING Fortis Hospital Mohali Ε Direction Normal DGU **Glass type** Low e Glass **Baseline Glass** specs as per Glass (North-(South-Parameter **Double Glaze Unit** NW AHRAE 90.1 east) west) Low-U Double Glaze Unit SW U Value (Btu/hr-sqft 1.2 0.35 0.49 *F) SHGC 0.25 0.23 0.35

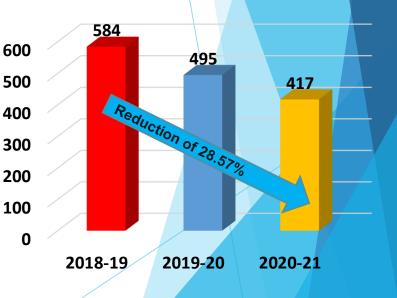
Energy Consumption Overview



- Energy Consumption:-Reduction of 12.03% compared to 2018-19 SEC:- There is a reduction of 12.07% compared to 2018-19
- kWh/Bed:- Reduction of 12.03% since 2018-19


Thermal Energy Consumption Overview

Parameter	2018-19	2019-20	2020-21
HSD /PNG (CBM)	261750	221570	186974
PNG CBM/M2	5.20	4.40	3.71
PNG CBM/Bed	584	495	417
No. Of Beds	448	448	448
Average Occupancy	88	89	87%
Built Up area	50336	50336	50336


PNG Consumption

PNG CBM/M2

PNG CBM/Bed

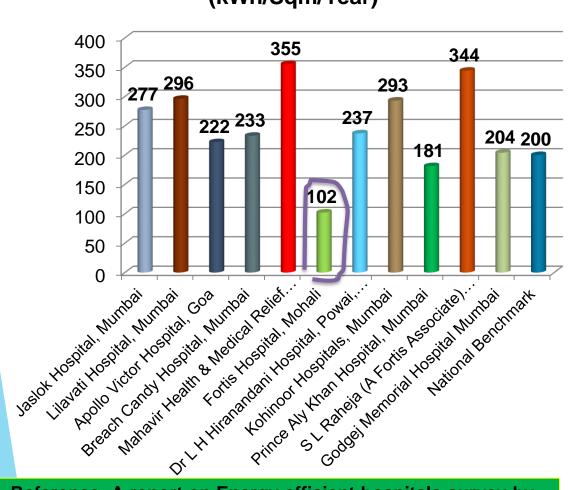
HSD+PNG/M2:- There is a reduction of 28.57% compared to 2018-19 HSD+PNG Consumption:- Reduction of 28.65% compared to 2018-19 HSD+PNG/BED:- There is a reduction of 28.60% compared to 2018-19

FORTIS MOHALI ENERGY PERFORMANCE VS GLOBAL, NATIONAL & COMPETITION BENCHMARK

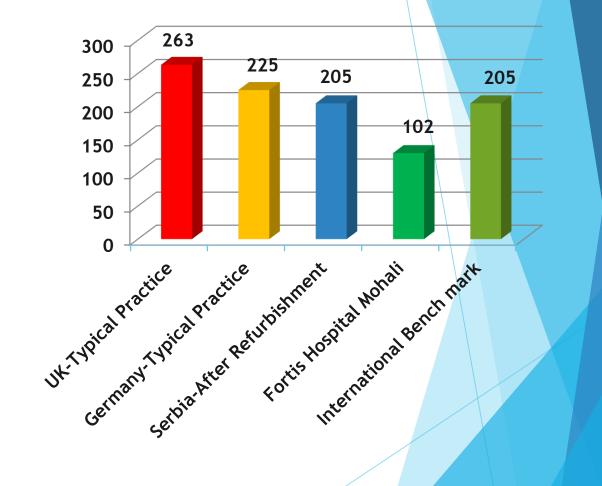
Internal Benchmark

Bring down the SEC to a double digit figure by 2023

Target	Consumption (kWh)	SEC (kWh/m2)	% Saving
Short Term	5000880	99	3.0%
Mid term	4825850	96	6.5%
Long term	4639995	92	10.0%


Specific Energy consumption of Fortis Mohali is 102 kwh/m2

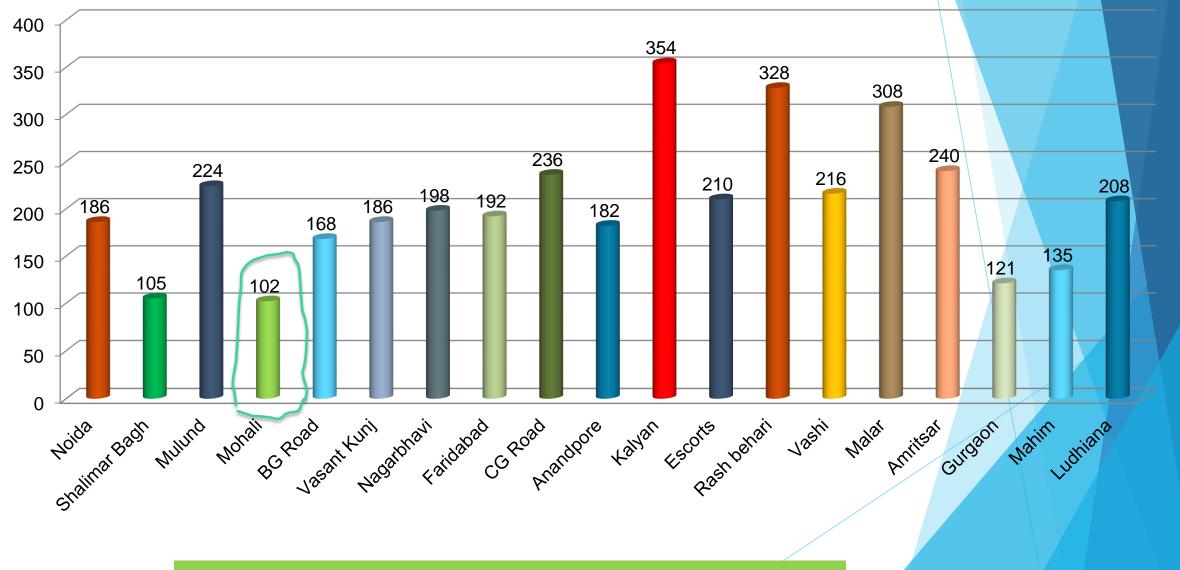
BEE National benchmark is defined for Hospitals is 200 kWh/m2


Global benchmarking defined by Serbia, UK and Germany (CIBSE TM 46), (EnEv) 205kWh/m2

Specific Energy consumption of Fortis Mohali is 102 kwh/m2 which is 51.5 % below the global bench marking and 49% below the National Benchmark

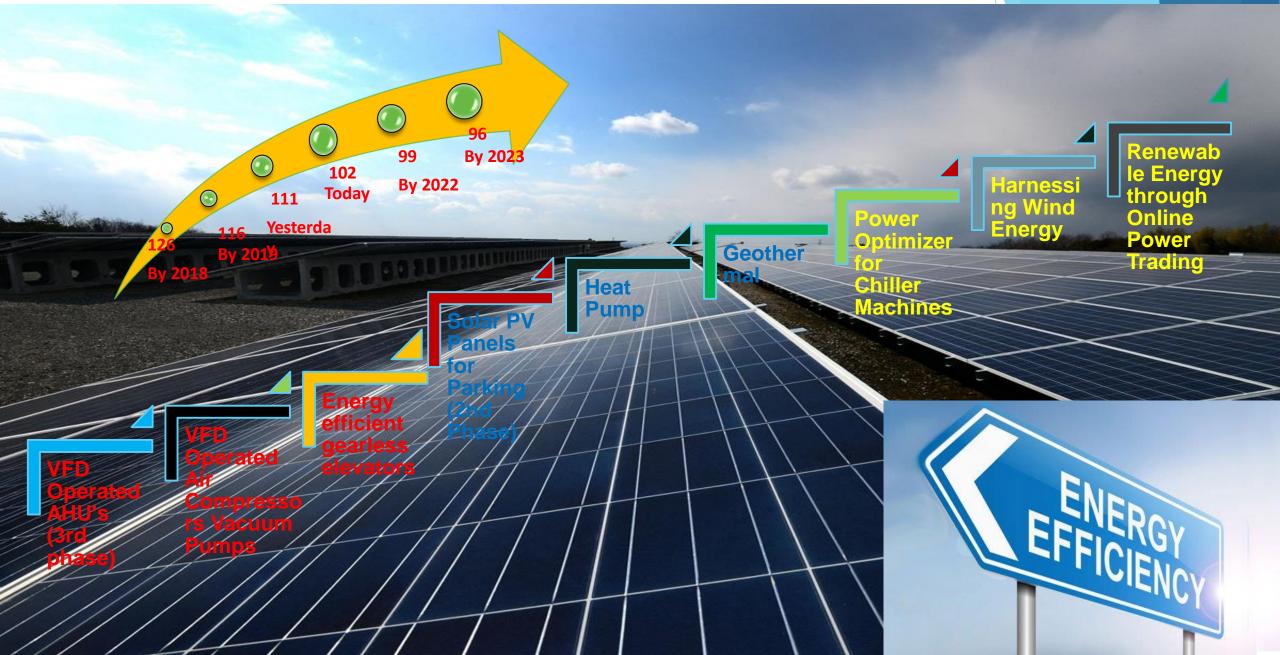
NATIONAL BENCH MARKING (KWH/SQM) International Benchmarking

Specific Energy Consumption (kWh/Sqm/Year) Specific Energy Consumption -kWh/Sq.Mtrs./year

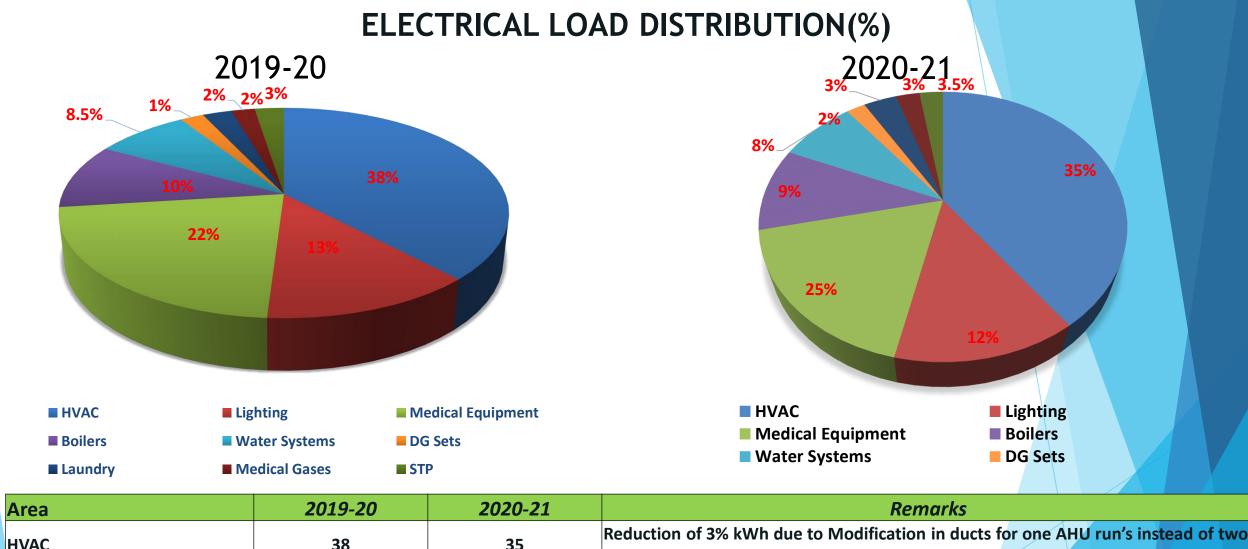


Reference A report on Energy efficient hospitals survey by *Cll, Schneider and S.L.Raheja* BEE National benchmark is defined for Hospitals is 200 kWh/m2

Comparison of building energy benchmarks in Serbia, UK and Germany (CIBSE TM 46), (EnEv)----- KWH/M2


EPI Index across Fortis Hospitals

Energy performance Index


Energy performance Index for Fortis Group Hospitals All Weather

Roadmap for being Global Leader in Energy Efficiency....

ENCON PROJECTS PLANNED IN FY 2021-23

Year	Description
2021-22	VFD Operated AHU's (3rd phase)
2021-22	VFD Operated Air Compressor/Vacuum Pumps
2021-22	Energy efficient gearless elevators
2021-22	Solar PV Panels for Parking (2nd Phase)
2021-22	Heat Pump for Hot Water
2021-22	Geo Thermal system to stop usage of Cooling Towers for water cooled Chillers
2022-23	Power Optimizer for Chiller Machines
2022-23	Harnessing Wind Energy
2022-23	Renewable Energy through Online Power Trading

НVАС	38	35	Reduction of 3% kWh due to Modification in ducts for one AHU run's instead of two and VFD operated AHU's , Dehumidifier and FCU replacement.
Lighting	13	12	Reduction of 1% due to the LED replacement & motion sensors and rest due to the addition of other loads
Medical Equipment's	22	25	Increased by 3% due to the new equipment's
Water System	8.5	8	Slightly decreased by 0.5% due to modification in STP/ETP
Laundry	3	3.5	Increased by 0.5% due to the new equipment's

Our Encon Journey

2019

2019

EPI 111

- 1. Automatic Chiller Tube cleaning System
- 2. PNG for Kitchen
- 3. Replacement of Conventional AHU's with VFD operated AHU's
- 4. Additional Automatic power factor controller
- 5. STP Modification with UV

2020

EPI 102

2020

- 1. Double skin AHU with VFD
- 2. Split AC's replaced with FCU's
- 3. Humidity controls in OT's
- 4. Creation of negative pressure OT/ICU's

5. Ensured 24X7 Operation of boilers on PNG instead of HSD

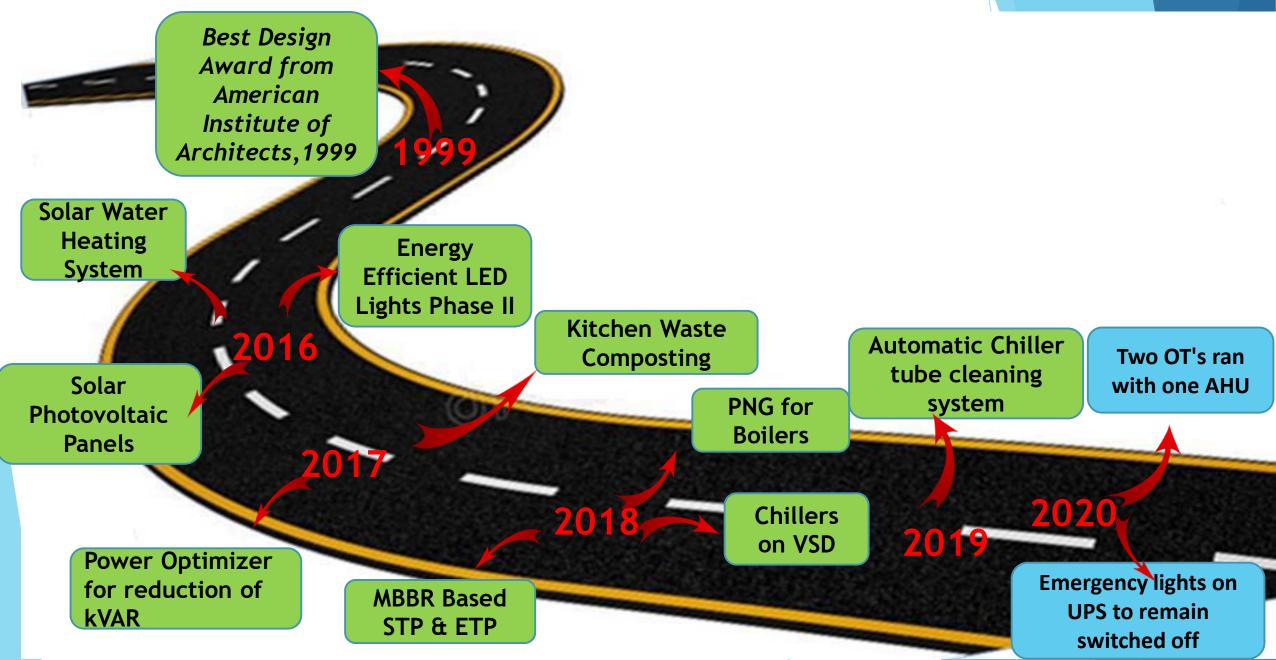
6PC's will go to sleep mode automatically

BEE National Benchmark 200

1999 Best Design Award from American Institute of Architects

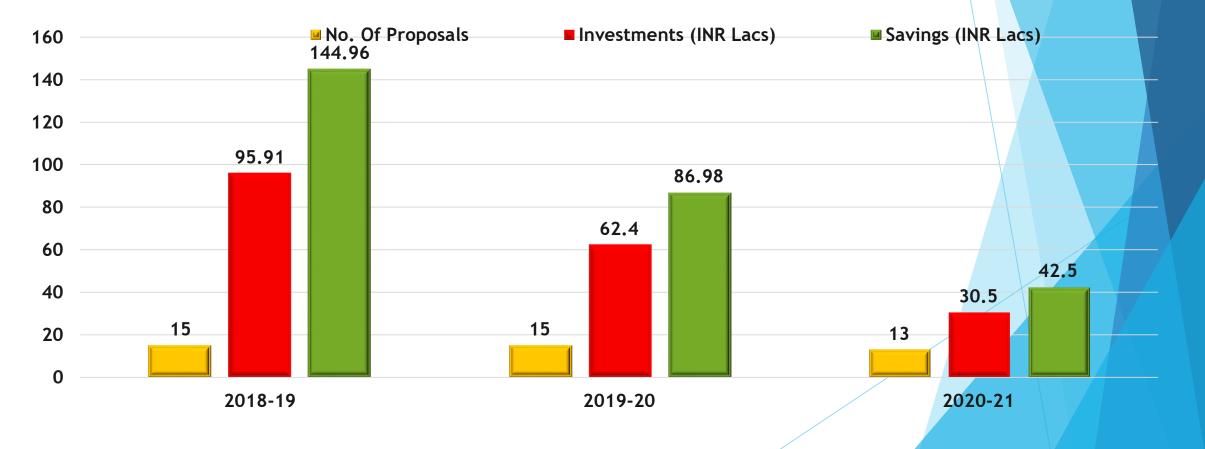
2018

1. Chillers on VSD


- 2. PNG for Boilers
- 3. Installation of ETP and reutilization of Water

2018

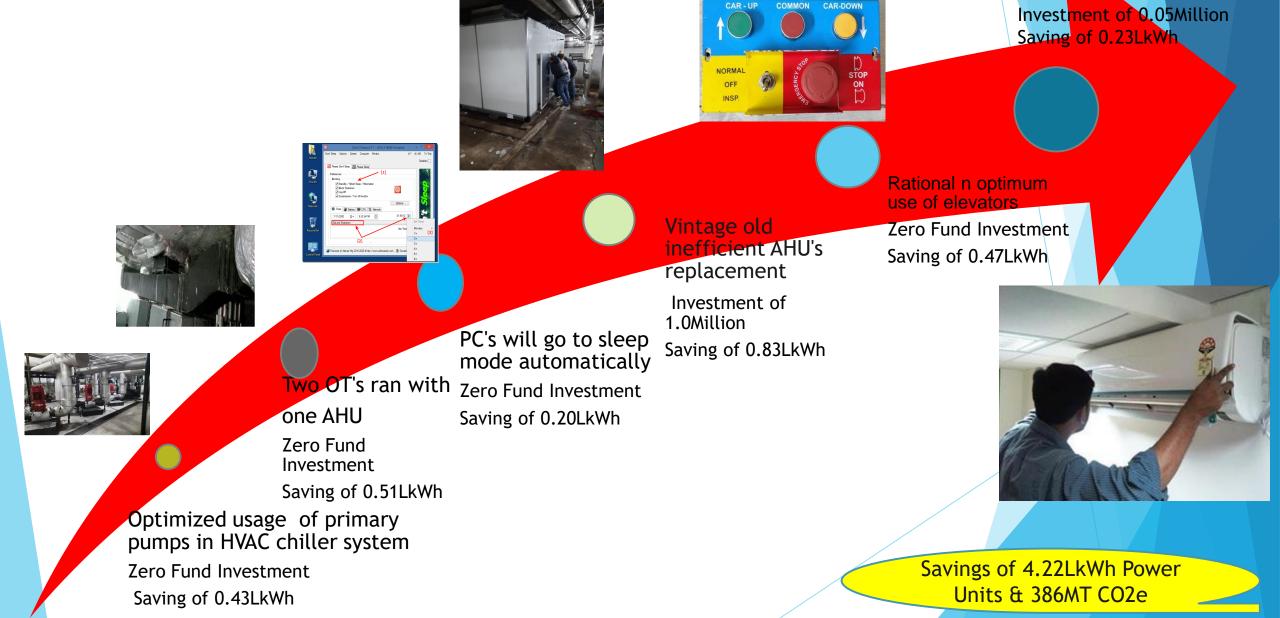
EPI 116


4. VFD operated Air compressor

FIRST OF ITS KIND PROJECTS IN HOSPITAL

SUMMARY OF PROJECT IMPLEMENTED IN LAST THREE YEARS

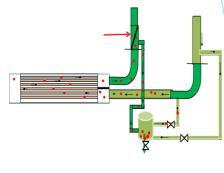
Year	No of Energy Saving Projects	Investments (INR Million)	Electrical Savings (Million kWh)	Thermal Savings Million Kcal/MTOE)	Savings (INR Million)
2018-19	15	9.59	0.75	0.143	14.496
2019-20	15	6.24	0.746	0.007	8.698
2020-21	13	3.05	0.422	0.015	4.25



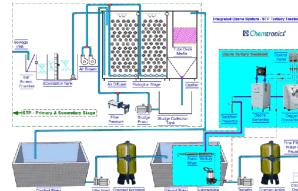
LIST OF ENCON PROJECTS IN 2020-21

No	Title of Project	Year	Annual Electrical Saving (kWh)	Annual Thermal Saving	Total Annual Savings (Rs million)		Payback (Months)	CO2e Reduction (MT)
1	Vintage old inefficient AHU's replaced with New double skin AHU with VFD	2020-21	82760	0	0.68277	1	2	68
2	Split AC's replaced with FCU's in Engineering Service Area & revrse for night.	2020-21	22700	0	0.187275	0.5	3	19
3	Humidity controls in OT's	2020-21	20000	0	0.165	0.85	5	16
4	Creation of negative pressure OT/ICU's thus load on chiller reduced	2020-21	13000	0	0.10725	0.5	5	11
5	Ensured 24X7 Operation of boilers on PNG instead of HSD by all boilers got PNG compatible	2020-21	0	15	0.77	0.2	0	40
6	Optimized usage of primary pumps in HVAC chiller system	2020-21	43200	0	0.356	0	0	35
7	PC's will go to sleep mode automatically after 3 minutes if not in use across hospital	2020-21	20000	0	0.165	0	0	16
8	Rational n optimum use of elevators	2020-21	47200	0	0.389	0	0	39
9	Emergency lights on UPS to remain switched off , only to be on during power outage	2020-21	20000	0	0.165	0	0	16
10	Linear Accelerator/Brachy area AHU ran with one AHU	2020-21	30000	0	0.248	0	0	25
11	Optimization of ICU AHU's running in nights/COVID period	2020-21	47900	0	0.395	0	0	39
12	Two OT's ran with one AHU during Covid period/Night (3 nos)	2020-21	51200	0	0.422	0	0	42
13	Chiller running optimization done by increase in set point during Covid phase/dry summer	2020-21	23900	0	0.197	15 0	0	20
	Total		421860	15	4.249295	3.05	15	386
T	These projects have been replicated in other units							

Energy Savings Project Implemented in 2020-21


FCU's

Energy Savings Project Implemented in 2019-20


REPLACEMENT OF CONVENTIONAL AHU'S

AUTOMATIC POWER FACTOR CONTROLLER

AUTOMATIC chiller tube cleaning system

MODIFICATION OF LIGHTING CIRCUIT

PNG & AGNISUMUKH

Burner in Kitchen

Thermal recycling in Laundry

HYDROPATH

UV/UF filtration in STP

Savings of 7.46LkWh Power Units & 630MT CO2e

Energy Savings Project Implemented in 2018-19

Chillers on VSD

PNG for boilers

Splits AC's for night

LED Lights

Savings of 7.45LkWh Power Units & 988MT CO2e

Energy Efficient Motors

VFD operated Air Compressor

VFD on AHU's

Innovative Project (1) Optimized usage of primary pumps in HVAC chiller system

Statement: Running Operations of HVAC contributes to huge Energy costs thus its rational usage was need of the hour

Trigger for implementing the project

The trigger was to stop the wastage of energy.

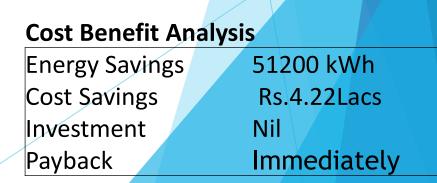
Working: Although primary pumps were installed to cater water to the chiller so that adequate GPM required for efficient running in maintaining the desired output temperatures are maintained. However, we observed that due to the placement of our plant in basement, in team meeting technicians came up with idea that water flow can be made available in case we stop even running Primary pumps, in order to have it established we placed GPM meters and through gravity we could achieve the desired GPM.

OEM was consulted hence one bye-pass line was connected in return line & observed the required GPM needed were achieved hence, Primary pumps 7.5 kW (2Nos) remained switched off for 10-12 hours in a day. Team work led to this innovation.

Cost Benefit AnalysisEnergy Savings43200 kWhCost SavingsRs.3.56LacsInvestmentNilPaybackImmediately

Innovative Project (2)

ENERGY CONSERVATION THROUGH OPTIMUM USAGE OF OT AHU'S


Statement: 6 Nos OT's remained in operation 24x7 with AHU's running

Trigger for implementing the project

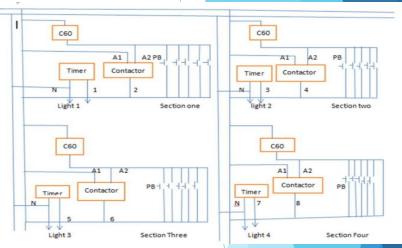
Challenge: 6 Numbers Cardiac and Ortho OT's were being fed from AHU's each on 100% fresh air supply. OT's AHU's remain on 24X7 irrespective of occupied or not and it was always painful to maintain temperatures and run AHU even if there are no cases post OT hours.

Result :We decided to run one AHU and give flow through duct by placing damper and thus we were able to give airflow through running one AHU and kept One AHU off of 12.5 KW the raise the temperature up to 27-28 deg during night hours and continue this during Sundays.

Innovative Project (3)

Emergency lights on UPS to remain switched off, only to be on during power outage

Statement:


Central UPS which cateres to critical OT Supply, Lighting etc. is lifeline and remained loaded during day.

Trigger for implementing the project

With rise in facility and equipment load, UPS remained loaded with each passing day and in order to have reliable operations there was a need to reduce load on it to have smooth parallel operations of 2x200 kVa Operations

Working:

Innovative idea came during Energy conservation brain storming meeting. It was observed that Emergency Lights remain ON 24X7 During day as well as night. In order to reduce load decided and made a provision to shut these lights off and will come into work only during the power outage thus reduces the load on UPS besides average life of these tubes were enhanced.

Cost Benefit Analysis

Energy Savings	20000 kWh
Cost Savings	Rs.1.65Lacs
Investment	Nil
Payback	Immediately

Encon Project- Vintage old inefficient AHU's replaced with New double skin AHU with VFD

Statement: Inefficient ICU's AHU's replaced with Efficient VFD operated AHU's

Trigger for implementing the project

Consistent problems were being faced due to non efficient AHU's resulted in increased complaints and patient discomfort. Analysis was done during the peak rainy season hence found AHU's were working with 50-55% efficiency thus decided to replace with efficient AHU's so that the wasteful energy losses be controlled with no patient discomfort.

Working:

The planning was done in such a way that disruption in day to day operations would be minimal and for this had to wait for shutdowns/ movement of patients to other ICU's was a challenge.

Cost Benefit Analysis				
Energy Savings	82760 kWh			
Cost Savings	Rs.6.83Lacs			
Investment	10 Lacs			
Payback	5 Months			
Replication Po	tential: Yes			

Encon Project- Rational & optimum use of elevators

Statement

Some elevators were found to be in use during off hours when not required hence rationalize its usage and were able to stop 4 elevators for more than 10 hours a day not only saving us huge kWh besides reduction in less complaints due to less wear and tear enhanced life.

Encon Project- Optimization of ICU AHU's running in nights/COVID period

Statement

Both Cardiac (CCU) & SICU(Surgical) ICU's were being fed with two AHU's , but it was observed during Covid period with low occupancy there was no need to give low temperatures , Also with new high end AHU's running both the ducts were modified with auto damper controls.

Cost Benefit Analysis

Energy Savings 47200 kWh Cost Savings Rs.3.89Lacs Investment Nil Payback Immediately

Replication Potential: Yes

Cost Benefit Analysis Energy Savings 47900 kWh

Cost Savings Rs.3.95Lacs Investment Nil Payback Immediately

Encon Project- Split AC's replaced with Encon Project- Linear Accelerator/Brachy FCU's in Engineering Service Area & area AHU ran with one AHU reverse for night Statement

Statement

Some of the splits were shutoff during the day and were remain in operation during night hence huge energy savings were achieved.

Cost Benefit Analysis

Energy Savings	22700 kWh
Cost Savings	Rs.1.87Lacs
Investment	5.0 Lacs
Payback	3 Months

Replication Potential: Yes

Two bunkers were made but only one Linear Accelerator was commissioned in first phase along with Brachy therapy and brachy was installed with second Linac AHU besides some equipment's room, hence both high ned AHU 's were in use during covid time managed running at higher set points later on modifications done in ducting and thus ran both Brachy and Linac with one AHU. Managed to shut off one AHU during Covid time and later on managed with one AHU both linear accelerator and Brach therapy by doing duct modifications.

Cost Benefit Analysis

Energy Savings30000 kWhCost SavingsRs.2.48LacsInvestmentNilPaybackImmediatelyReplication Potential: Yes

Encon Project- Creation of negative Encon Project- Ensured pressure OT/ICU's thus load on chiller reduced

Statement

Though our endeavour was to make our Consultants safe due to Covid Pandemics hence request came from Management to create Negative pressure ICU's and OT's, we did the same and as a result we could give high temperature in OT's resulted in some energy savings. Two ICU's and 2 OT's were dedicated for such covid positive procedures.

Cost Benefit Analysis

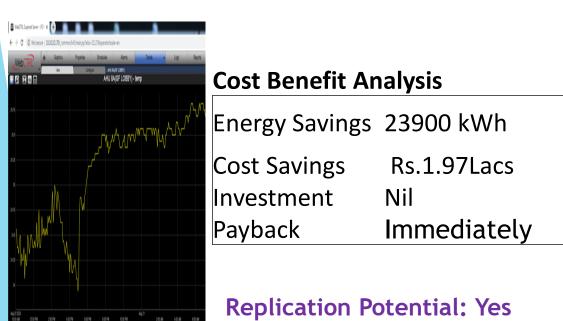
Energy Savings 13000 kWh Cost Savings Rs.1.07Lacs Investment 5.0 Lacs Payback 5 Months

Replication Potential: Yes

24X7 **Operation of boilers on PNG instead of** HSD by all boilers got PNG compatible

Statement

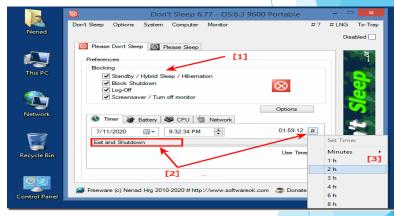
All boilers got converted into PNG besides both kitchens in the hospital makes the operations cost effective due to differential in costings per litter of HSD and LPG. Losses were minimal besides maintenance and low sulphur contents in atmosphere. It thus contributed to ozone layer depletion as well.


Cost Benefit Analysis

HSD Savings 15000 Litres Cost Savings Rs.7.7Lacs Investment 2.0 Lacs Payback Immediately

Encon Project- Chiller running optimization done by increase in set point during Covid phase/dry summer

Statement


Due to low occupancy during April 2020, we decided to increase the chiller set point which continued till dry summer as well resulted in energy savings.

Encon Project- PC's will go to sleep mode automatically after 3 minutes if not in use across hospital

Statement

Modifications done by IT resulted in huge energy savings

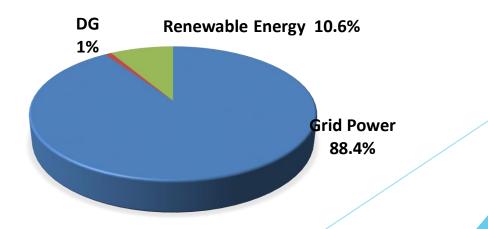
Cost Benefit Analysis

Energy Savings 20000 kWh Cost Savings Rs.1.65Lacs Investment Nil Payback Immediately

Encon Project- Humidity controls in OT's

Statement

Earlier OT's were equipped with double coil with hot water provision, which were converted into chilled water system in order to meet temperature requirements over a period of time but during rainy seasons humidity controls challenges were taken control through excessive cooling thereby resulting in huge costs, hence to save energy costs in this situation dehumidifiers were provided in OT's and results were found to be excellent in providing comfort to surgeons and OT staff besides savings energy costs.



Cost Benefit /	Analysis	
Energy Saving	s 20000 kWh	
Cost Savings	Rs.1.65Lacs	
Investment	8.5 Lacs	
Payback	5 Months	

UTILISATION OF RENEWABLE ENERGY SOURCES

Technology (Electrical)	Type of Energy	Onsite/Offsite	Installed Capacity (Kw)	Generation (LkWh)	% of Overall electrical Energy
1	Solar PV Panels	Onsite	420kW	5.459	10.59%
Technology (Thermal)	Type of Energy	Onsite/Offsite	Installed Capacity (kCal)	Usage LkCal	% of Overall Thermal Energy
1	Solar Water Heater	Onsite	8000	25.55	70%
2	Rainwater harvesting	Onsite	400	18.00	35%

ENERGY CONSUMPTION TREND 2020-21

Results Achieved on Green Initiatives

Green Initiatives4538	Amount Saving INR (Million)	CO2t Reduction	Equivalent to trees planted
Going the LED way	3.39	432	29376
Solar electricity generation Rooftop	0.25	68	4674
Solar water heating	1.98	57	3917
Solar electricity generation in car parking	0.2	65	4538
Rain water harvesting pits			Improved ground water security

Reduction of 622 CO2t by these projects

Solar electricity generation Rooftop

Solar electricity generation in car parking

Going the LED way

Rain water harvesting pits

Solar water heating

UTILIZATION OF WASTE MATERIAL

DRY AND WET GARBAGE FROM KITCHEN

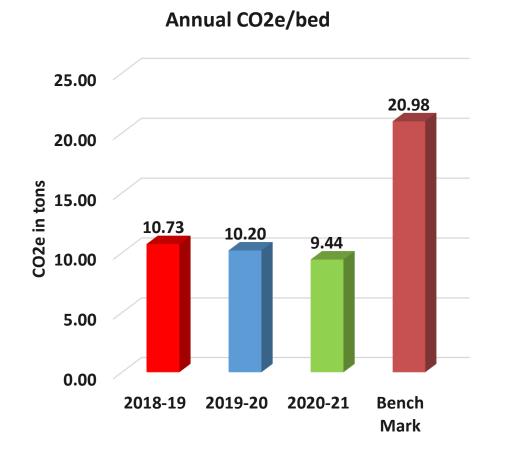
STP/ETP PLANT

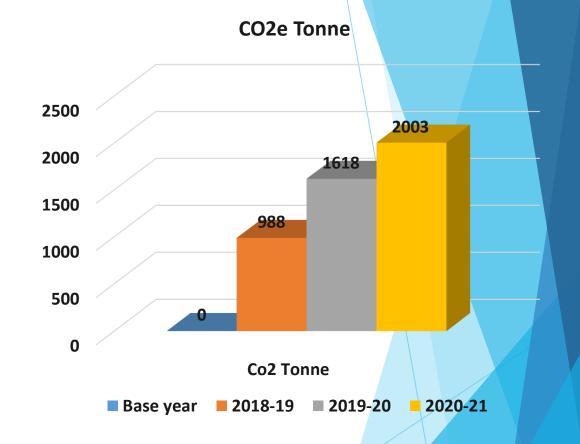
FHM Generates mainly these type of waste

- Water, Paper, waste oil and E waste.
- Water waste is treated by using STP/ETP and reused in Gardening/Landscaping.
- We use identified vendor for paper, waste oil and E waste for recycling as per state laws.
- Condensation recovery in heating water for daily usage

GHG Inventorisation

Fortis Mohali is committed to GHG reduction not only by reduction of its own facilities but also creating Benchmarks for Indian Buildings as Smart Building.


Fortis Mohali Every year allocates Budget for Energy Efficiency program as a corporate initiative and allocate the budget based on Global competition, any project below 5years of pay back qualifies for it, This year Fortis Mohall has allocated approx. 10 Million INR for this program Globally.


2020-21 Project was part of the same corporate budgeting program.

Reduction of 2003CO2e tons from 2018 to last year.

	FORTIS HOSPITAL, MOHALI		FHM - 1B	
A		HASE AND CLEAN	Page No: 1 of 1 Reviewed on: 1/7/19	
12 Fortis	POLICY ON GREEN PURCHASE AND CLEAN HOSPITAL		Valid till: 30/6/21	
PREPARED BY Head Engineering		APPROVED BY Director		
•	ffects of environment (GREEN) on ss through infection free ambience	•	even hasten the	
measured. 3.0 Procedure 3.1 The proces a) Environment b) Structural Re c) Process Rec d) Outcome Re 4.0 Responsib Various depart	uirement quirement	DIFFERENT LAWS AN		
Pro b. Rej	spital has established monitoring, r cedures ports (Third Party Validation) chasing green products	eview & verification of		

Carbon Footprint Reduction

Reference IFHE : International Federation of Hospital Engineering 2013 CO2e Calculation for EB units from Central Electricity Authority of India (0.82kg/unit) CO2e Calculation for PNG from www.epa.Gov/energy/greenhouses (1.95mtCO2/SCM) CO2e Calculation for HSD from ecoscore.be (2.64kg/litre)


Environmental Monitoring

100% Compliance against the pollution norms:

- DG Sets Stack monitoring.
- Air Quality monitoring
- > 24 hrs Ambient Noise monitoring
- DG Sets Noise monitoring.
- > Monitoring & controlling of waste water parameter.
- Monthly drinking water analysis.

Medical Compressed Air Validation as per ISO 8573-1: 2010 (E)

Sr. no.	Parameters	Results	Standard	Test Method
1	Suspended Particulate Meter(PM)	7.2μg/m³		IS:5182(P-23):2006 Reaff. 2017
	Respirable Suspended Particular Meter			
2	(PM10)	76.8	100.0µg/m³	IS:5182(P-23):2006 Reaff. 2017
3	Sulphur Dioxide (SO2)	7.4	80.0µg/m³	IS:5182(P-2):1999 Reaff. 2001
4	Nitrogen dioxide (NO2)	12.2	80.0µg/m³	IS:5182(P-6):2006 Reaff. 2017
5	Fine Particulate matter (PM2.5)	41.8	60.0µg/m³	SOP (ETL/SOP/02-Section-4):2015
6	со	ND	2.0µg/m³	IS:5182 (P-10)
7	Lead (pb)	ND	1.0µg/m³	Lab. SOP (BY AAS)
8	Ozone (O3)	ND	100.0µg/m³	CPCB Guideline

Green Supply Chain

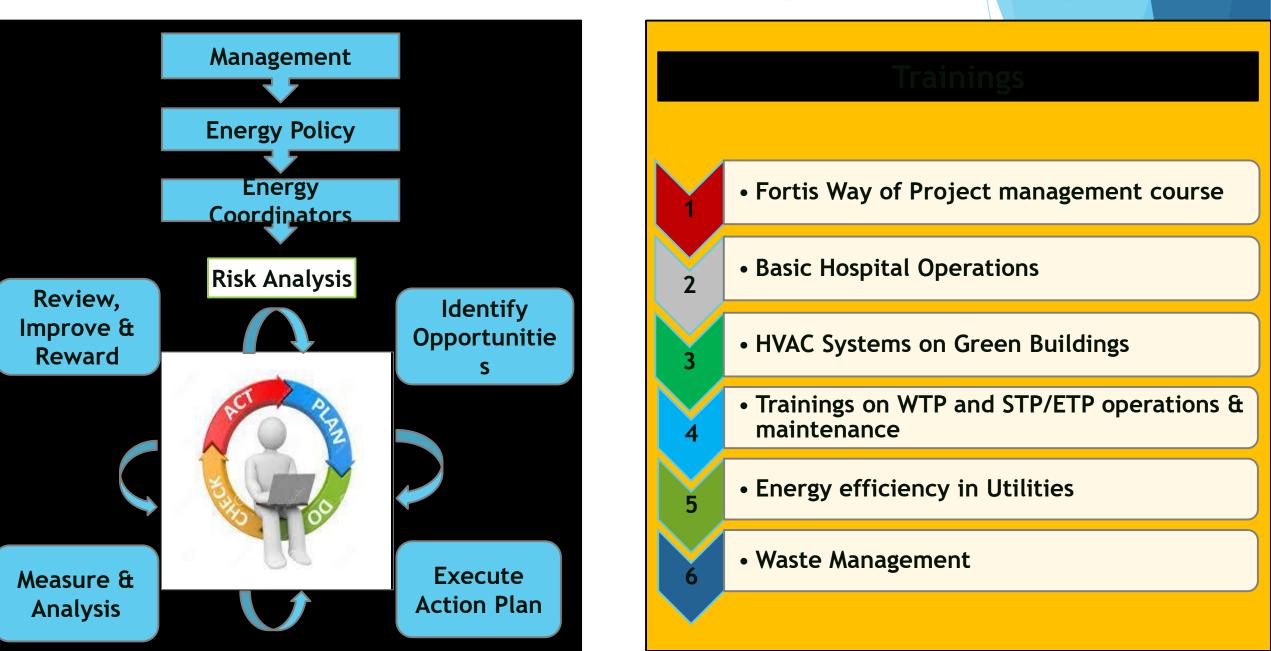
a. Information on Projects implemented- Our Housekeeping cleaning Agents & Card Board and Wooden Packing Boxes are purchased from identified vendor who manufactures with Recycled material. b. Information on Evaluation done- Different vendors were evaluated and manufacturing processes and materials used were certified by FHM as per FHM standard before giving clearance for the Boxes.

c. Information on Benefits achieved- 50% reduction in cost and contribution to green initiative by the company.

Use of 100% LED lights in entire complex

Minimize exposure of building occupants and cleaning personnel to potentially hazardous chemical, biological and particulate contaminants Our Green chillers provide air conditioning comfort with lowest electrical energy

Segregation of dry and wet garbage at kitchen Wet garbage 100% recycling through AGA for piggery


Energy excellence frame work-FHM Energy management structure **Total Employee** Involvement ÷ Monitor Monitoring and review systems ÷ Energy excellence **Energy Audits** Analyze ÷ Bench Marking Improve ÷

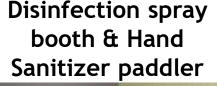
35

Energy management planning

Energy Efficient Equipment's

EnCon Team – Monitoring & Trainings

MEASURING AND MONITORING


Morning Meet with all HOD & GM **Engineering Executive Meet** Recording Daily HLP consumption Engineering Staff level Units shift compared to last year wise Compare and analyze meet **ELECTRICIAN** Online energy data deviation in shift, shiftcapturing system Action plan for any wise deviation Online HVAC monitoring Daily energy report system (BMS) Monthly report on the Energy meters for load energy indices Formatting capturing Daily Report SHIFT Monthly performance **ENGINEER** review Energy trends analysis Discussing and Analyzing with All HOD's CHIEF and Engineers **ENGINEER**

Kaizen Initiatives by in-house Technicians & Supervisors Team

Timer Controller for peripheral lighting

Motion Sensor for corridors

Limit Switch for Air curtains and Fire shaft Door

Damaged pedestal fan converted into wall mounted fan in engineering Area

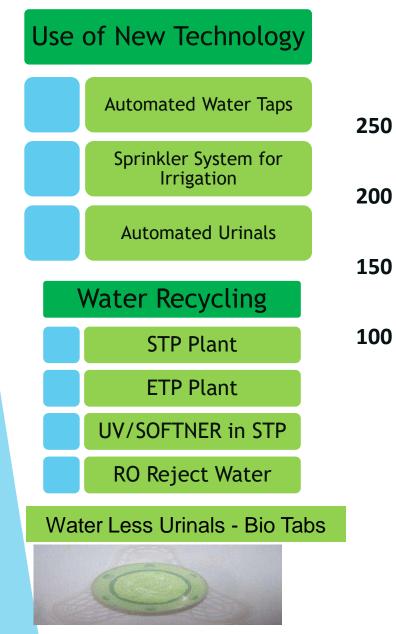
Battery Operated Emergency lights in Corridors/stairs

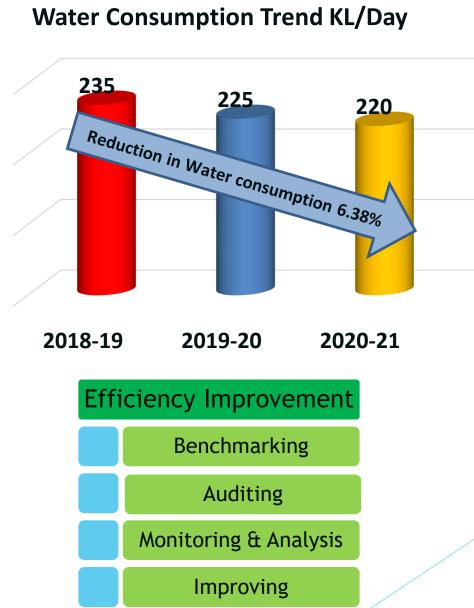
Auto Operation of DG Fresh Air/Exhaust fans

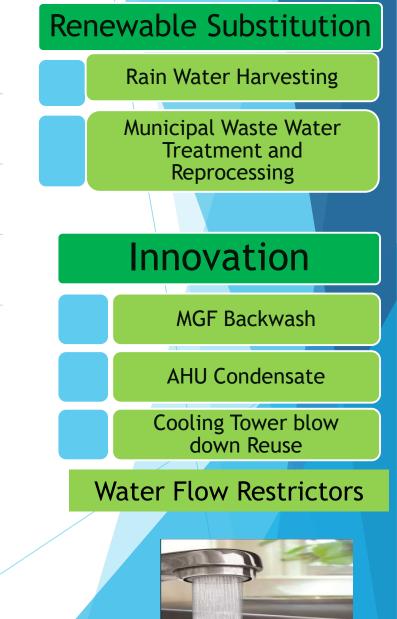
Covid sample taken booth

Conventional lights replacement with LED

Modification in ducts for Two OT's ran with one AHU




Implementation of ISO 50001


ISO 50001 Implementation WIP

0.07% investment of energy saving projects on total turnover of the company

WATER - CONSERVATION METHODOLOGY

FHM Awards & Recognition

